Exponential Sums and Lattice Points Ii

نویسنده

  • M. N. HUXLEY
چکیده

The area A inside a simple closed curve C can be estimated graphically by drawing a square lattice of sides 1/M. The number of lattice points inside C is approximately AM. If C has continuous non-zero radius of curvature, then the number of lattice points is accurate to order of magnitude at most M for any a> §. We show that if the radius of curvature of C is continuously differentiate, then the exponent § may be replaced by 75, improving the exponent -ft of Iwaniec and Mozzochi [15] (for whom C was a circle) and the author [8]. We use results on two-dimensional exponential sums and rounding error sums. Assuming further differentiability, we obtain a stronger result in the mean for a family of lattice point problems. Applications to quadrature are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

Some Problems in Number Theory I: the Circle Problem

C.F. Gauss [Gaus1] [Gaus2] showed that the the number of lattice points in circles is the area, πt , up to a tolerance of order at most the circumference, i.e. the square root, O( √ t) . Sierpinski in 1904, following work of Voronoi [Vor] on the Dirichlet Divisor Problem, lowered the exponent in Gauss’s result to 1/3 [Sierp1] [Sierp2]. Further improvements that have been obtained will be descri...

متن کامل

On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension

We describe a simpliication of a recent polynomial-time algorithm of A. I. Barvinok for counting the number of lattice points in a poly-hedron in xed dimension. In particular, we show that only very elementary properties of exponential sums are needed to develop a polynomial-time algorithm.

متن کامل

Sum-integral Interpolators and the Euler-maclaurin Formula for Polytopes

A local lattice point counting formula, and more generally a local Euler-Maclaurin formula follow by comparing two natural families of meromorphic functions on the dual of a rational vector space V , namely the family of exponential sums (S) and the family of exponential integrals (I) parametrized by the set of rational polytopes in V . The paper introduces the notion of an interpolator between...

متن کامل

Exponential Sums over Points of Elliptic Curves

We derive a new bound for some bilinear sums over points of an elliptic curve over a finite field. We use this bound to improve a series of previous results on various exponential sums and some arithmetic problems involving points on elliptic curves. Subject Classification (2010) Primary 11L07, 11T23 Secondary 11G20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993